메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김혜선 (성균관대학교 제일병원 병리과)
저널정보
대한세포병리학회 대한세포병리학회지 대한세포병리학회지 제18권 제1호
발행연도
2007.1
수록면
13 - 19 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An aim of this study was to evaluate an effect of misinterpretation of pregnancy related cellular changes on the postpartum regression rate of abnormal cervical smears in pregnancy. A series of 265 cases with abnormal cervical smears in pregnancy were selected from a database of cervical smear results. The selected cases were classified as regression, persistence, and progression based on the results of postpartum cervical smears and histology. Of the selected cases, 162 cases were classified as regression and the postpartum regression rate was 61.1% (162/265). We reviewed abnormal cervical smears in pregnancy these cases. The primary cytologic diagnoses of these cases were ASCUS (118 cases), AGUS (2 cases), ASCUS/AGUS (1 case), LSIL (25 cases), LSIL R/O HSIL (2 cases), and HSIL (14 cases). With information of the pregnacy, we identified decidual cells in 24 cases, but cells identified by the Arias-Stella reaction and trophoblasts were not found. Sixteen cases out of 162 cases were reclassified as a pregnancy related change rather than an abnormal. Desidual cells were considered as ASCUS in 15 cases and as LSIL in one case. The revised postpartum regression rate was 55.5%(147/265) and was lower than the original. Consequently, misinterpretation of the pregnancy related cellular changes has an effect on a rise of the postpartum regression rate of the abnormal cervical smear in pregnancy. Pathologists may diagnose pregnancy related cellular changes as abnormal findings if they do not have information regarding the pregnancy. Therefore, clinical information of pregnancy and knowledge about the pregnancy related cellular changes are essential to prevent misinterpretation.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0