메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Arslan, M. Hakan (Selcuk University) Ceylan, Murat (Selcuk University) Kaltakci, Yaspr M. (Selcuk University) Ozbay, Yuksel (Selcuk University) Gulay, Fatma Gulten (Department of Civil Engineering, Istanbul Technical University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제27권 제2호
발행연도
2007.1
수록면
117 - 134 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The force (load) reduction factor, R, which is one of the most important parameters in earthquake load calculation, is independent of the dimensions of the structure but is defined on the basis of the load bearing system of the structure as defined in earthquake codes. Significant damages and failures were experienced on prefabricated reinforced concrete structures during the last three major earthquakes in Turkey (Adana 1998, Kocaeli 1999, Duzce 1999) and the experts are still discussing the main reasons of those failures. Most of them agreed that they resulted mainly from the earthquake force reduction factor, R that is incorrectly selected during design processes, in addition to all other detailing errors. Thus this wide spread damages caused by the earthquake to prefabricated structures aroused suspicion about the correctness of the R coefficient recommended in the current Turkish Earthquake Codes (TEC - 98). In this study, an attempt was made for an approximate determination of R coefficient for widely utilized prefabricated structure types (single-floor single-span) with variable dimensions. According to the selecting variable dimensions, 140 sample frames were computed using pushover analysis. The force reduction factor R was calculated by load-displacement curves obtained pushover analysis for each frame. Then, formulated artificial neural network method was trained by using 107 of the 140 sample frames. For the training various algorithms were used. The method was applied and used for the prediction of the R rest 33 frames with about 92% accuracy. The paper also aims at proposing the authorities to change the R coefficient values predicted in TEC - 98 for prefabricated concrete structures.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0