메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현종 (동아대학교) 유승의 (동아대학교) 이철호 (한국과학기술원) 남광우 (경성대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제9호
발행연도
2020.9
수록면
345 - 351 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
행정기관은 정책 대응성을 제고하기 위해 빅데이터 분석에 관심을 기울이고 있다. 빅데이터 중 뉴스 기사는 정책이슈와 정책에 대한 여론을 파악하는데 중요한 자료로 활용될 수 있다. 한편으로 새로운 온라인 매체의 등장으로 뉴스기사의 생산은 급격히 증가하고 있어 문서 자동분류를 통해 기사를 수집할 필요가 있다. 그러나 기존 뉴스 기사의 범주와 키워드 검색방법으로는 특정 행정기관 및 부서별로 업무에 관련된 기사를 자동적으로 수집하는 것에 한계가 있었다. 또한 기존의 지도학습 기반의 분류 기법은 다량의 학습 데이터가 필요한 단점을 가지고 있다. 이에 본 연구에서는 행정부서의 업무특징을 포함한 분류사전을 활용하여 기사의 분류를 효과적으로 처리하기 위한 방법을 제안한다. 이를 위해 행정기관의 업무와 신문기사를 Word2Vec와 토픽모델링 기법으로 부서별 특징을 추출하여 분류사전을 생성하고, 행정 부서별로 신문기사를 자동분류 한 결과 71%정도의 정확도를 얻었다. 본 연구는 행정부서별 신문기사를 자동분류하기 위해 부서별 업무 특징 추출 방법과 비지도학습 기반의 자동분류 방법을 제시하였다는 학문적 · 실무적 기여점이 있다.

목차

요약
Abstract
1. 서론
2. 이론적 배경
3. 연구방법 및 실험
4. 결론
References

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0