메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이예린 (단국대학교) 윤영란 (단국대학교) 문현준 (단국대학교)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第36卷 第11號(通卷 第385號)
발행연도
2020.11
수록면
239 - 245 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It is important to have detailed information on the number of occupants and their activities for appropriate building operation and control of HVAC systems. Indoor environment is affected by using thermal environmental devices, and the occupant’s activities as well. Thus, this study focuses on the classification of occupant’s activities using machine learning algorithms with indoor environmental data. We developed an occupant’s status detection model by seasons(summer, winter, summer and winter) using classification algorithms. Data collection was performed in a Smart Living Testbed. This study categorized occupant’s status into 7 activities; sleeping, resting, working, cooking, eating, exercising, or away. Two classification algorithms(KNN, Random Forest) were evaluated for the development of an occupant’s behavior classification model. For Random Forest model using summer data, the accuracy of the occupant behavior detection model was 95.96% and for KNN, the accuracy was 94.75%. For models using winter data, the accuracy of Random Forest model was 98.91% and KNN was 98.90%. When we used summer and winter data together for the classification models, the accuracies of both models were 97.82% for Random Forest and 97.16% for KNN, respectively. However, cooking and rest showed lower accuracies compared to other activities.

목차

Abstract
1. 서론
2. 연구 방법
3. 연구결과
4. 결론
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0