메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
하솔리 나임 (한국에너지기술연구원) 이춘경 (목원대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第36卷 第11號(通卷 第385號)
발행연도
2020.11
수록면
247 - 255 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Workers working indoors in a building have a problem with health threats caused by secondary pollutants in the factory environment, as well as fine dust pollutants. Among them, paint over-spray factories with more than 7,000 small-scale paint and coding booths in korea emit polycarbonate and volatile pollutants. Therefore, in this study, to improve the indoor air quality in a small-scale paint over-spray factory, a pollutant removal system (FLCS-IAQ; Facility Life Care System Indoor Air Quality) for removing thinner and volatile organic compounds was proposed based on IoT sensor technology. As a result of conducting CFD simulation and VOCs removal test for chamber and AC unit installed inside the system for the technical suitability of the system, it was found that two pollutant particles such as VOCs are possible. As a result of removal of VOCs based on demonstration test, particle collection efficiency was the highest and 93% VOCs removal efficiency was shown when the ratio of paint aerosol and sorbent supply was set at 1:1. VOCs inlet concentration was 140 ppm and outlet concentration was about 10 ppm, and the average VOCs removal of about 93% was confirmed during the test. In the future, it is expected that additional research on the installation location and number depending on the scale of the paint over-spray factory will be possible, but it is also possible to expand the indoor air pollution pattern and ventilation equipment according to the working pattern, and also to the painting for the interior site.

목차

Abstract
1. 서론
2. 선행연구 및 문헌 고찰
3. 소규모 도장공장의 오염입자제거시스템 개요
4. 오염입자제거시스템(FLCS-IAQ) 검증 테스트
5. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0