메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Eunchong Kim (Agency for Defense Development) Kanghyun Park (Agency for Defense Development) Hunmin Yang (Agency for Defense Development) Se-Yoon Oh (Agency for Defense Development)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
427 - 431 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In tandem with growing deep learning technology, vehicle detection using convolutional neural network is now become a mainstream in the field of autonomous driving and ADAS. Taking advantage of this, lots of real image datasets have been produced in spite of the painstaking work of data collection and ground truth annotation. As an alternative, virtually generated images are introduced. This makes data collection and annotation much easier, but a different kind of problem called ‘domain gap’ is announced. For instance, in off-road vehicle detection, there is a difficulty in producing off-road image dataset not only by collecting real images, but also by synthesizing images sidestepping the domain gap. In this paper, focusing on the off-road army tank detection, we introduce a synthetic image generator using domain randomization on off-road scene context. We train a deep learning model on synthetic dataset using low level features form feature extractor pre-trained on real common object dataset. With proposed method, we improve the model accuracy to 0.86 AP@0.5IOU, outperforming naïve domain randomization approach.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. METHOD
4. EXPERIMENTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001570251