메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jialei Liu (Universiti Tunku Abdul Rahman) Soung-Yue Liew (Universiti Tunku Abdul Rahman) Boon Yaik Ooi (Universiti Tunku Abdul Rahman) Donghong Qin (Guangxi University for Nationalities)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
839 - 844 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A Smart Warehouse (SW) usually employs an automated warehouse management system that integrates artificial intelligence and robotics to automate the warehouse processes. For instance, an Automated Retrieval System (ARS) is used in SW to retrieve products ordered by customers from shelves in order to speed up the product movement. Such a process is important because the product retrieval speed directly affects the subsequent processes, such as packaging and delivery, thus bringing a significant impact on the entire transaction duration between merchants and customers. In general, an order from a customer may contain several items and these items need to be retrieved from the respective shelves of the warehouse before the packaging process can be started. The retrieval delay of an order can then be defined as the duration from the time when the order being input to the system until the time when the last item of the order is retrieved. To reduce the retrieval delay of orders, we combine the integrality of order with the job scheduling of ARS. We introduce the concept of Order Tag and propose two Order-Based scheduling algorithms according to the greedy strategy to reduce the total retrieval delay of orders. Mathematical models are constructed to classify and evaluate the retrieval problems. Both algorithms take polynomial time and the ideal state is that all the retrieval jobs are evenly distributed to stackers. Simulation results demonstrate that these two strategies can reduce the total retrieval delay by approximately 30% comparing to the existing algorithms.

목차

Abstract
1. INTRODUCTION
2. WAREHOUSE ENVIRONMENT
3. Mathematical Model
4. SCHEDULING ALGORITHMS
5. Performance Analysis
6. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569443