메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서지훈 (건국대학교) 태현철 (한국생산기술연구원)
저널정보
한국색채학회 한국색채학회논문집 한국색채학회논문집 제34권 제4호(통권 제88호)
발행연도
2020.11
수록면
47 - 55 (9page)
DOI
10.17289/jkscs.34.4.202011.47

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The most important step in packaging printing is determining the spot color blending rate. Currently, in most processes, spot colors are produced based on the operator"s experience. Accordingly, the process is managed inefficiently and unnecessary resources are consumed. To solve this problem, we intend to establish an artificial intelligence model that can predict the color coordinates of spot colors. An optimal algorithm is constructed to predict the color coordinates of the spot color. Based on the stacking ensemble, four models are firstly generated, and secondly a single model that receives outputs of the generated four models is generated to develop an algorithm. As a result of learning the developed model by gradually increasing the number of data to check the performance of the model according to the number of data, it can be seen that the performance of the model increases as the number of data increases. In addition, as a result of training the model using all the data, it can be seen that it predicts the CIE L*, a*, and b* of the output well. In conclusion, beyond the mathematical model that can predict color coordinates well only in a specific structure, the artificial intelligence model implemented through data learning predicts the color coordinates of spot colors considerably. This suggests that artificial intelligence can also be used in color-related fields. In this study, effective process management can be carried out by reducing time and minimizing resources by applying the learned artificial intelligence model to the process. In addition, it is expected that artificial intelligence that can accurately predict colors by acquiring a lot of data in the future will be developed.

목차

Abstract
1. Introduction
2. Related Theories
3. Result
4. Conclusion and Future Research
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-651-000078092