메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jeong Eun Choi (Myongji University) Jungho Song (NFRI) Yong Ho Lee (Myongji University) Sang Jeen Hong (Myongji University)
저널정보
한국진공학회(ASCT) Applied Science and Convergence Technology Applied Science and Convergence Technology Vol.29 No.6
발행연도
2020.11
수록면
190 - 194 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The fast and accurate measurement of the thickness of multiple oxide/nitride layer deposition (MOLD) films is desirable to improve the quality of the plasma deposition process and potentially simplify the metrology in 3D NAND flash memory devices. In this study, we performed deep neural network modeling of the reflectance spectrum data of two pairs of oxide/nitride films on a silicon substrate. We designed a deep neural network model to estimate the thickness of four stacked thin-film layers and the MOLD film. Principle component analysis of this model was performed to develop another model with 27 features. Finally, a combined model was designed by fine tuning both the models and applying an ensemble algorithm to both. The mean absolute error of the combined predictive model was lower than that of the individual models. We verified the performance of the proposed model by considering the thin-film deposition mechanism with respect to the infrared reflectance metrology of MOLD thin films. This study demonstrates the potential of machine learning for predicting the thickness of multiple layered films, addressing the limitations of optical metrology.

목차

ABSTRACT
1. Introduction
2. Modeling
3. Results and discussion
4. Conclusions
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-420-000049416