메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Homin Park (Korea Maritime & Ocean University) Gyungsoo Park (Korea Maritime & Ocean University) Yoorin Kim (Korea Maritime & Ocean University) Jungkn Kim (Intelligent System Technology) Jae-hoon Kim (Korea Maritime & Ocean University) Seongdae Lee (Korea Maritime & Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제44권 제6호
발행연도
2020.12
수록면
500 - 506 (7page)
DOI
10.5916/jamet.2020.44.6.500

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Small unmanned aerial vehicles, commonly known as drones, and their related industries are improving in leaps and bounds. The global drone industry began with a military focus and subsequently progressed into commercial applications. Consequently, abuse cases linked to drone technology are gradually increasing. Following the technical advancement in drone technology, studies on drone detection and prevention are actively ongoing. This is one such study. Radar-based drone detection that combines various existing sensors or equipment has shortcomings, including high costs and specialist operations. Thus, this paper proposes a drone-detection system that uses only thermal images from short-wavelength infrared (SWIR) cameras. The YOLO model, which is widely used for object recognition, was used for the drone-detection algorithm. Labels were attached to 22,921 thermal images to test the constructed system; 16,121 images were used for training and the remainder for testing. The test results showed 98.17% precision and 98.65% recall. Learning through drone-image shooting in various environments, after removing static from clouds and other noise, is expected to improve detection performance in the future.

목차

Abstract
1. Introduction
2. Related Work
3. Drone-Detection System with SWIR Cameras
4. Experiments
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-559-001450384