메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이경민 (Gangneung-Wonju National University) 박철원 (Gangneung-Wonju National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제1호
발행연도
2021.1
수록면
45 - 50 (6page)
DOI
10.5370/KIEE.2021.70.1.045

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
Recently, for real-time monitoring of renewable energy, a wide area power system monitoring and operation technology using PMU has emerged. Through WAMS based on the PMU, time synchronization data for a wide area is acquired and a vast amount of data is accumulated. Therefore, it is a problem to be solved in the future to process this data and deliver highly usable and valuable system status information to system operators. This paper proposes a new systemic phenomenon identification algorithm using big data of PMU installed in RES and a DNN. First, the PMU installed at the RES in the Gangwon region is introduced, and then the data structure collected is explained. Next, by analyzing each system phenomenon from the PMU data, a total of 8 types of system data such as steady state, tap rise, tap fall, feed-in and out, etc. are generated. After conducting supervised learning by constructing learning data for 8 systematic phenomena using a DNN, systematic phenomena discrimination is performed on the DNN model learned through the test data. Finally, the algorithm was designed, implemented, and evaluated to identify robust systematic phenomena for new PMU based big data. The simulation results showed that the proposed new algorithm accurately discriminates all systematic phenomena.

목차

Abstract
1. 서론
2. PMU 기반 빅 데이터의 분석 및 전처리
3. 새로운 계통 현상 판별 알고리즘
4. 새로운 알고리즘 구현 및 시험
5. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-001427237