메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박병찬 (Soongsil University) 유인재 (Beyondtech) 이재청 (Beyondtech) 장세영 (Soongsil University) 김석윤 (Soongsil University) 김영모 (Soongsil University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제4호
발행연도
2020.12
수록면
130 - 137 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
실감형 360도 미디어는 기존 영상보다 고품질, 초대용량으로 영상의 크기가 크며, 다양한 렌더링 방식을 사용하여 기존방식으로 이미지 처리할 경우 영상인식 속도가 느려지는 문제가 있다. 또한, 실감형 360도 미디어의 특성상 특정 장소에서 카메라를 고정시켜 한 장면만 촬영하는 경우가 대부분이기 때문에, 모든 영상에서 특징정보를 추출할 필요가 없다. 본 논문에서는 실감형 360 미디어의 프레임 추출과정, 프레임 다운사이징, 구형 형태의 렌더링 과정을 거치고, 렌더링 과정에서 영상을 16개 프레임으로 분할 캡처하여 캡처된 프레임에서 객체 정보가 많은 중앙 부분에서 픽셀당 RGB 벡터와 딥 러닝을 이용하여 객체를 추출한 뒤, 객체 특징정보를 이용하여 대표 프레임을 선정하는 방법을 제안한다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. RGB 백터 및 객체 특징정보를 이용한 대표 프레임 추출 방법
Ⅳ. 실험 및 결과
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0