메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김윤수 (Changwon National University) 석종원 (Changwon National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제4호
발행연도
2020.12
수록면
202 - 208 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대역 확장(Bandwidth Extension)이란 채널 용량 부족 혹은 이동통신 기기에 탑재된 코덱의 특성으로 인해 부호화 및 복호화 과정에서 대역 제한(band limited)되거나 손상된 협대역 신호(NB, Narrow Band)를 복원, 확장하여 광대역 신호(WB, Wide Band)로 전환 시켜주는 것을 의미한다. 대역 확장 연구는 주로 음성 신호 위주로 대역 복제(SBR, Spectral Band Replication), IGF(Intelligent Gap Filling)과 같이 고대역을 주파수 영역으로 변환하여 복잡한 특징 추출 과정을 거쳐 이를 바탕으로 사라지거나 손상된 고대역을 복원한다. 본 논문에서는 딥러닝 모델 중 오토인코더(Autoencoder)를 바탕으로 1차원 합성곱 신경망(CNN, Convolutional Neural Network)들의 잔차 연결을 활용하여 복잡한 사전 전처리 과정 없이 일정한 길이의 시간 영역 신호를 입력시켜 대역 확장 시킨 음향 신호를 출력하는 모델을 제안한다. 또한 음성 영역에 제한되지 않는 음악을 포함한 여러 종류의 음원을 포함하는 데이터셋에 훈련시켜도 손상된 고대역을 복원할 수 있음을 확인하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0