메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seung-Jin Lee (Kumoh National Institute of Technology) Gi-Man Kim (Kumoh National Institute of Technology) Seong-Dae Choi (Kumoh National Institute of Technology)
저널정보
한국기계가공학회 한국기계가공학회지 한국기계가공학회지 제20권 제1호
발행연도
2021.1
수록면
95 - 102 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Analysis of the fracture surface is one of the most important methods for determining the cause of equipment structural failure. Whether structural failure is caused by impact or fatigue is necessary information in industrial fields. For ferrous and non-ferrous metal materials, two fracture phenomena are generated on the fracture surface: ductile and brittle fractures.
In this study, machine learning predicts whether the fracture is based on ductile or brittle when structurural failure is caused by impact. The K-means algorithm calculates this ratio by clustering the brittle and ductile fracture data from a photograph of the impact fracture surface, unlike the existing method, which calculates the fracture surface ratio by comparison with the grid type or the reference fracture surface shape.

목차

ABSTRACT
1. Introduction
2. K-means Algorithm
3. Impact Test Method
4. Fracture Surface Analysis Program Design
5. Results and Discussion
6. Conclusion
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-581-001488775