메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박성현 (인천대학교) 강석훈 (인천대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제1호
발행연도
2021.1
수록면
27 - 35 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 인공 신경망이 과거 학습 데이터의 정보를 망각하는 치명적 망각(Catastrophic Forgetting) 현상을 개선하기 위해, 학습할 데이터에 따라서 가변적으로 정규화 강도를 조절하는 방법을 제안한다. 이를 위하여 과거에 학습된 데이터와 현재 학습할 데이터들의 관계를 측정하는 방법을 사용하였다. 성능 평가를 위해 MNIST, EMNIST 데이터를 사용하였다. 3가지 시나리오에서 실험한 결과, 같은 도메인을 갖는 데이터의 경우, 이전 태스크의 정확도가 0.1~3%, 다른 도메인을 갖는 데이터의 경우 이전 태스크(Task)의 정확도가 10~13% 향상 시킬 수 있었다. 이는 본 논문의 방법으로, 도메인이 다른 경우, 망각률이 줄어든 것을 의미한다. 다양한 도메인을 가진 데이터를 연속적으로 학습할 경우, 이전 태스크들의 정확도가 모두 50% 이상을 달성하였고 평균 정확도가 약 7% 향상되었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001462462