메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서민지 (카카오) 이기용 (숙명여자대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.1
발행연도
2021.1
수록면
13 - 26 (14page)
DOI
10.5626/JOK.2021.48.1.13

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
그래프 임베딩이란 그래프를 저차원 공간의 벡터로 표현하는 것이다. 최근, 딥러닝을 사용해 그래프를 임베딩하는 연구가 진행되고 있지만 대부분의 연구는 그래프의 노드 간 연결 구조에 집중하고 노드간 간선에 임의의 가중치를 갖는 가중 그래프에 대한 임베딩 기법에 대해서 많은 연구가 진행되지 않았다. 따라서 본 논문에서는 가중 그래프를 위한 새로운 임베딩 기법을 제안한다. 제안 기법은 가중 그래프가 주어지면 먼저 해당 그래프의 내부에 존재하는 노드-가중치 시퀀스들을 추출한 다음 LSTM 오토인코더를 사용해 각 시퀀스들을 고정된 길이의 벡터로 인코딩한다. 마지막으로 각 그래프의 인코딩 벡터들을 모아 하나의 최종 임베딩 벡터를 생성한다. 이렇게 얻어진 임베딩 벡터는 가중 그래프간 유사도 측정이나 분류 등에 활용될 수 있다. 여러 유사 가중 그래프 그룹들로 구성된 합성 데이터와 실제 데이터를 이용한 실험을 통해 제안 기법이 유사 가중 그래프를 탐색하는데 94% 이상의 정확도를 보임을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 배경 지식
4. 제안 가중 그래프 임베딩 기법
5. 성능 평가
6. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-569-001489810