메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황기수 (광운대학교) 이우주 (광운대학교) 오승준 (광운대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제26권 제1호
발행연도
2021.1
수록면
14 - 25 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
서로 다른 시간에 촬영된 같은 위치의 원격 탐사 영상에서 변화된 사항을 찾는 변화 탐지는 다양한 영역에 적용되기 때문에 매우 중요하다. 그러나 정합 오차, 건물 변위 오차, 그림자 오차 등이 오탐지를 발생시킨다. 이러한 문제점을 해결하기 위해 본 논문은 CADNet(Change Attention Dense Siamese Network)을 제안한다. CADNet은 다양한 크기의 변화 영역을 탐지하기 위해 FPN(Feature Pyramid Network)을 사용하며, 변화 영역에 주목하는 변화 주목 모듈을 적용하고, 낮은 수준 (Low-level)의 특징과 높은 수준 (High-level)의 특징을 모두 포함하고 있는 피처 맵을 변화 탐지에 사용하기 위해 DenseNet을 피처 추출기로 사용한다. CADNet의 성능을 Precision, Recall, F1 측면에서 측정하였을 때 WHU 데이터 세트에 대하여 98.44%, 98.47%, 98.46%이었고, LEVIR-CD 데이터 세트에 대해 90.72%, 91.89%, 91.30%이었다. 이 실험의 결과는 CADNet이 기존 변화 탐지 방법들보다 향상된 성능을 제공한다는 것을 보여준다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. CADNet (Change Attention based Dense Siamese Network)
Ⅳ. 실험 결과 및 분석
Ⅴ. 결론
참고문헌 (References)

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001482371