메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sangkeun Jung (Chungnam National University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.14 No.4
발행연도
2020.12
수록면
154 - 162 (9page)
DOI
10.5626/JCSE.2020.14.4.154

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Natural language understanding (NLU) is a core technology for implementing natural interfaces. To implement and support robust NLU, previous studies introduced a neural network approach to learn semantic vector representation by employing the correspondence between text and semantic frame texts as extracted semantic knowledge. In their work, long short-term memory (LSTM)-based text and readers were used to encode both text and semantic frames. However, there exists significant room for performance improvement using recent pretrained transformer encoders. In the present work, as a key contribution, we have extended Jung"s framework to work with pretrained transformers for both text and semantic frame readers. In particular, a novel semantic frame processing method is proposed to directly feed the structural form of the semantic frame to transformers. We conducted massive experiments by combining various types of LSTM- or transformer-based text and semantic frame readers on the ATIS, SNIPS, Sim-M, Sim-R, and Weather datasets to find the best suitable configurations for learning effective semantic vector representations. Through the experiments, we concluded that the transformer-based text and semantic frame reader show a stable and rapid learning curve as well as the best performance in similarity-based intent classification and semantic search tasks.

목차

Abstract
I. INTRODUCTION
II. SEMANTIC VECTOR LEARNING WITH A PRETRAINED TRANSFORMER
III. EXPERIMENTS
IV. RELATED WORK
V. CONCLUSION
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0