메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Junghwan Lee (Kwangwoon University) Heesang Eom (Kwangwoon University) Yuli Sun Hariyani (Kwangwoon University) Cheonjung Kim (Kwangwoon University) Yongkyoung Yoo (Catholic Kwandong University) Jeonghoon Lee (Kwangwoon University) Cheolsoo Park (Kwangwoon University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.10 No.1
발행연도
2021.2
수록면
31 - 36 (6page)
DOI
10.5573/IEIESPC.2021.10.1.031

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Owing to the high mortality rate of influenza diseases, the early examination and accurate detection of the influenza virus are crucial for preventing potential tragedies. This paper reports the design of a highly reliable machine learning classifier for automatic detection of the influenza virus based on an image of its detection kit. Convolutional neural networks (CNNs), currently the most reliable image classifiers, were designed for the images of an influenza detection kit, and their hyperparameters were fine-tuned using an architecture search algorithm, Bayesian optimization, and hyperband (BOHB). With an overall accuracy of 90.14%, the designed and optimized 2DCNNs algorithm successfully separate the influenza virus from normal using the detection kit images.

목차

Abstract
1. Introduction
2. Background
3. Materials and Methods
4. Results
5. Conclusion
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0