메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
모준상 (Chungbuk National University) 성선경 (Chungbuk National University) 최재완 (Chungbuk National University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제39권 제3호
발행연도
2021.6
수록면
157 - 165 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 위성영상, 항공사진 등의 해상도가 향상됨에 따라 고해상도 원격탐사 자료를 이용한 다양한 연구가 진행되고 있다. 특히, 국토 전역의 건물객체 추출은 수치지도 레이어 및 주제도 작성에 필수적이기 때문에 높은 정확도가 요구된다. 본 연구에서는 딥러닝의 영상처리 기법 중 의미론적 분할에 사용되는 대표적인 모델인 SegNet, U-Net, FC-DenseNet, HRNetV2를 이용하여 건물객체 추출 모델을 생성하고, 이에 따른 모델의 평가를 수행하였다. 학습자료는 다양한 건물들로 이루어진 영상을 이용하여 생성하였고, 평가는 세 지역에 나누어서 진행하였다. 먼저 학습자료와 인접한 지역을 통해 모델의 성능을 평가하였고, 이후 학습자료와 상이한 지역을 통해 모델의 적용성을 평가하였다. 그 결과 HRNetV2 모델이 건물객체 추출의 성능과 적용성 면에서 가장 우수한 결과를 보였다. 본 연구를 통해 수치지도 내 건물레이어 생성 및 수정의 가능성을 확인하였다.

목차

Abstract
초록
1. 서론
2. 연구 방법
3. 연구 대상지 및 평가 방법
4. 실험 결과 및 분석
5. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-533-001839021