메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권경빈 (RaonFriends) 홍수민 (RaonFriends) 허재행 (RaonFriends) 정호성 (Korea Railroad Research Institute) 박종영 (Korea Railroad Research Institute)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제10호
발행연도
2021.10
수록면
1,594 - 1,600 (7page)
DOI
10.5370/KIEE.2021.70.10.1594

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study developed a reinforcement learning-based energy management agent that controls the concentration of fine dust by controlling the power consumption of energy facilities such as air conditioners and blowers in stations. To apply reinforcement learning, the problem was first defined based on the Markov decision-making process, and a model was developed to predict the concentration of fine dust in history using data correlated with fine dust. Based on the linear compensation function created based on this, the Deep Q-Network (DQN) method was applied to obtain the optimal policy based on the artificial neural network. In the case study, it was confirmed that convergence to the optimal policy was achieved through the learning process, and it was confirmed that the learned agent lowers the fine dust concentration by increasing the power consumption of the air conditioner when the fine dust concentration in the station rises above a certain level.

목차

Abstract
1. 서론
2. 시스템 모델링
3. 보상함수 개발
4. Deep Q-Network를 활용한 강화학습
5. 사례연구
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0