메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
U Venkatesh (Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital) Periyasamy Aravind Gandhi (Postgraduate Institute of Medical Education and Research)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제26권 제3호
발행연도
2020.1
수록면
175 - 184 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Considering the rising menace of coronavirus disease 2019 (COVID-19), it is essential to explore the methodsand resources that might predict the case numbers expected and identify the locations of outbreaks. Hence, we have done thefollowing study to explore the potential use of Google Trends (GT) in predicting the COVID-19 outbreak in India. Methods:The Google search terms used for the analysis were “coronavirus”, “COVID”, “COVID 19”, “corona”, and “virus”. GTs for theseterms in Google Web, News, and YouTube, and the data on COVID-19 case numbers were obtained. Spearman correlationand lag correlation were used to determine the correlation between COVID-19 cases and the Google search terms. Results:“Coronavirus” and “corona” were the terms most commonly used by Internet surfers in India. Correlation for the GTs ofthe search terms “coronavirus” and “corona” was high (r > 0.7) with the daily cumulative and new COVID-19 cases for a lagperiod ranging from 9 to 21 days. The maximum lag period for predicting COVID-19 cases was found to be with the Newssearch for the term “coronavirus”, with 21 days, i.e., the search volume for “coronavirus” peaked 21 days before the peak numberof cases reported by the disease surveillance system. Conclusions: Our study revealed that GTs may predict outbreaks ofCOVID-19, 2 to 3 weeks earlier than the routine disease surveillance, in India. Google search data may be considered as asupplementary tool in COVID-19 monitoring and planning in India.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0