메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정대원 (계명대학교)
저널정보
대한수학회 대한수학회보 대한수학회보 제58권 제1호
발행연도
2021.1
수록면
205 - 215 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In \cite{Be}, Beznosova proved that the bound on the norm of the dyadic paraproduct with $b\in \BMO$ in the weighted Lebesgue space $L^2(w)$ depends linearly on the $A_2^d$ characteristic of the weight $w$ and extrapolated the result to the $L^p(w)$ case. In this paper, we provide the weighted norm estimates of the dyadic paraproduct $\pi_b$ with $b\in \VMO$ and reduce the dependence of the $A_2^d$ characteristic to $1/2$ by using the property that for $b\in \VMO$ its mean oscillations are vanishing in certain cases. Using this result we also reduce the quadratic bound for the commutators of the Calder\'{o}n-Zygmund operator $[b,T]$ to $3/2$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0