메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김근아 (국제뇌교육종합대학원대학교 통합헬스케어학과 박사과정) 허선희 (2 뉴로아로마콜로지교육연구소 소장) 유성모 (국제뇌교육종합대학원대학교 통합헬스케어학과 교수)
저널정보
한국미용학회 한국미용학회지 한국미용학회지 제27권 제2호
발행연도
2021.1
수록면
489 - 500 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to provide a method for classifying essential oils based on the physicochemical properties and the composition ratios of essential oils components as a basic study for selecting essential oils that are suitable for individual body constitution and symptoms of disease. Twenty nine essential oils, of the main essential oils used in aromatherapy, with complete data values of 4 physicochemical properties (molecular weight, solubility, flash point, and relative density) were selected to conduct a cluster analysis. As a result, 29 essential oils were classified into 4 clusters. Cluster 1 was found to have the highest molecular weight, solubility and flash point and the second highest density compared to other clusters. Cluster 2 was found to be higher than average in terms of molecular weight, solubility, flash point with the highest density. Cluster 3 showed higher molecular weight and flash point than the average, whereas solubility and density are lower than the average. Cluster 4 showed the lowest molecular weight, solubility, flash point, and density. It was found that the results of the classification based on the physicochemical properties of chemical constituents were not fully consistent with the results of the existing classification methods of essential oil. Through the result of this study, further study regarding the classification is required to be conducted in the future and will become a basic research that could help to select individual customized essential oils with the new perspective of essential oil classification using the physicochemical properties.

목차

등록된 정보가 없습니다.

참고문헌 (55)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0