메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ha-Yeong Yu (Kongju National University) Myoung-Seok Suh (Department of Atmospheric Science Kongju National University) Seoung-Oh Ryu (Kongju National University)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제1호
발행연도
2021.1
수록면
41 - 55 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To detect thunderstorms occurring in Korea, National Meteorological Satellite Center (NMSC) also introduced the rapid-development thunderstorm (RDT) algorithm developed by EUMETSAT. At NMCS, the H-RDT (HR) based on the Himawari-8 satellite and the K-RDT (KR) which combines the GK2A convection initiation output with the RDT were developed. In this study, we optimized the KR (KU) to improve the detection level of thunderstorms occurring in Korea. For this, we used all available data, such as GK2A/AMI, RADAR, lightning, and numerical model data from the recent two years (2019-2020). The machine learning of logistic regression and stepwise variable selection was used to optimize the KU algorithms. For considering the developing stages and duration time of thunderstorms, and data availability of GK2A/AMI, a total of 72 types of detection algorithms were developed. The level of detection of the KR, HR, and KU was evaluated qualitatively and quantitatively using lightning and RADAR data. Visual inspection using the lightning and RADAR data showed that all three algorithms detect thunderstorms that occurred in Korea well. However, the level of detection differs according to the lightning frequency and day/night, and the higher the frequency of lightning, the higher the detection level is. And the level of detection is generally higher at night than day. The quantitative verification of KU using lightning (RADAR) data showed that POD and FAR are 0.70 (0.34) and 0.57 (0.04), respectively. The verification results showed that the detection level of KU is slightly better than that of KR and HR.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0