메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Angham Hazim (University of Babylon) Hayder M. Abduljalil (University of Babylon) Ahmed Hashim (University of Babylon)
저널정보
한국전기전자재료학회 Transactions on Electrical and Electronic Materials Transactions on Electrical and Electronic Materials 제22권 제2호
발행연도
2021.1
수록면
185 - 203 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an original basis molecule and (PMMA?Au), (PMMA?Al 2 O 3 ?Au), (PMMA?ZrO 2 ?Au) nanocomposites as the two group. The DFT calculations have been performed using Gaussian 09 package of programs. The geometrical optimization included both bonds in °A and angles in deg. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affi nity, electronegativity, electrochemical hardness, electronic softness and Electrophilic index. The geometrical optimization of PMMA and nanocomposites has been found in good agreement with the experimental data because of its relaxed geometrical parameters. One of the important results was obtain in this study, is the decreasing of the energy gap. This states that these nanocomposites arethe nearest to semiconductor due to the both HOMO and LUMO levels become more adjacent. These consequences mention to construct new structures with new electronic properties. All nanocomposites need small energy to become cationdue to ionization potential is decrease with addition nanoparticles to the pure PMMA, but the electronic affinity is an increase with with addition nanoparticles to the pure PMMA. The total ground state energy of the PMMA have largest value of total energy compared for other nanocomposites, where E T decreased with addition nanoparticles to pure PMMA. The hardness decrease with addition nanoparticles to the pure PMMA, therefore all the nanocomposites are softer, and this reduces the resistance of a species to lose electrons. Good relax for the structures of the studied PMMA was obtained theoretically, in which, the angles C?C, C=O and C?H in pure PMMA are remain in the same ranges for other nanocomposites. In general, most of the studied nonocomposites direct electronic transition from the valence to conduction band with wave length lies in the range of solar spectrum. The obtained results showed that the (PMMA?ZrO 2 ?Au) and (PMMA?Al 2 O 3 ?Au) nanocomposites have huge applications in electronics and photo-electronics fi elds.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0