메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Antoinette D. Martin (한국과학기술원) 김보아 (한국과학기술원) 예종철 (한국과학기술원)
저널정보
대한자기공명의과학회 Investigative Magnetic Resonance Imaging Investigative Magnetic Resonance Imaging 제24권 제4호
발행연도
2020.1
수록면
223 - 231 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Image registration is a fundamental task in various medical imaging studies and clinical image analyses, such as comparison of patient data with anatomical structures. In order to solve the problems of conventional image registration approaches, such as long computational time, recent deep-learning supervised and unsupervised methods have been extensively studied because of their excellent performance and fast computational time. In this study, we propose a deep-learningbased network for deformable medical image registration using unsupervised learning. Materials and Methods: In this paper, we solve the image-registration optimization problem by modelling a function using a convolutional neural network with polyphase decomposition to learn the spatial transformable parameters based on the input images and to generate the registration field. A spatial transformer is used to reconstruct the output warped image while imposing smoothness constraints on the registration field. With polyphase decomposition, our proposed method learns more features based on the input image pairs without the need for any ground-truth registration field. Results: Experimental results using 3D T1 brain MRI volume scans and compared with state-of-the-art image-registration methods demonstrated that our method provides better 3D-image registration. Conclusion: Our proposed method uses less computational time in registering unseen pairs of input images during inference and can be applied for other unimodal image registration tasks, and the hyper-parameters can be adjusted for the specific task.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0