메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정승훈 (국방과학연구소  ) 허선동 (국방과학연구소) 윤호상 (국방과학연구소)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.11
발행연도
2021.11
수록면
1,241 - 1,249 (9page)
DOI
10.5626/JOK.2021.48.11.1241

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
SDN (Software-Defined Networking) 환경에서 플로우의 경로 제어에 의한 QoS (Quality of Service) 지원 시, 현재의 단순한 최소 비용 경로 탐색 방식만으로는 비효율적인 경로 재설정 문제가 발생할 수 있다. 링크 품질에 기반 하여 도출된 플로우 경로의 실측 성능은 예측 성능과 다를 수 있고, 특히, 후보 경로에 대한 순차적 QoS 조건 탐색 시 이전에 최종 경로로 식별되었던 동일 경로에 대한 반복 탐색으로 경로 기반 QoS 지원의 효용성이 저하될 수 있다. 본 논문에서는 학습 기반 QoS 경로 탐색 모델을 제안한다. 학습 모델은 네트워크 상태에 따라 최종적으로 QoS 조건을 충족한 경로를 학습하고, 경로 재탐색 시 질의 네트워크 상태에 대한 QoS 경로를 예측한다. 실험 결과 본 학습 모델은 유사한 네트워크 상태 재현 시 불필요한 경로 반복 탐색 비용을 줄일 수 있고, 신속한 QoS 품질 복구가 요구되는 서비스 환경에서 다른 학습 기반 모델에 비해 효용성이 높다.

목차

요약
Abstract
1. 서론
2. QoS 경로 탐색 문제와 현황
3. 학습 기반 QoS 경로 예측
4. 고려할 사항
5. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-569-002168863