메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오경석 (금오공과대학교) 김성현 (금오공과대학교) 김진섭 (금오공과대학교) 이승환 (금오공과대학교)
저널정보
한국로봇학회(논문지) 로봇학회 논문지 로봇학회 논문지 제16권 제4호
발행연도
2021.12
수록면
336 - 344 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
This paper presents a robust deep learning-based human tracking framework in crowded environments. For practical human tracking applications, a target must be robustly tracked even in undetected or overcrowded situations. The proposed framework consists of two parts: robust deep learning-based human detection and tracking while recognizing the aforementioned situations. In the former part, target candidates are detected using Detectron2, which is one of the powerful deep learning tools, and their weights are computed and assigned. Subsequently, a candidate with the highest weight is extracted and is utilized to track the target human using a Kalman filter. If the bounding boxes of the extracted candidate and another candidate are overlapped, it is regarded as a crowded situation. In this situation, the center information of the extracted candidate is compensated using the state estimated prior to the crowded situation. When candidates are not detected from Detectron2, it means that the target is completely occluded and the next state of the target is estimated using the Kalman prediction step only. In two experiments, people wearing the same color clothes and having a similar height roam around the given place by overlapping one another. The average error of the proposed framework was measured and compared with one of the conventional approaches. In the error result, the proposed framework showed its robustness in the crowded environments.

목차

Abstract
1. 서론
2. 관련 연구
3. 강인한 인간 추적 방법
4. 실험
5. 분석
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-559-002132883