메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황재용 (원광대학교) 신성윤 (군산대학교) 강선경 (원광대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제11호
발행연도
2021.11
수록면
1,525 - 1,530 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스마트 공장의 생산 계획 및 제조 데이터를 이용하여 AI 기반의 효율적인 재고 관리 및 물류 최적화 기술을 적용하면 해당 제조 기업의 생산성 향상과 고객 만족도 향상을 기대할 수 있다. 본 논문에서는 공장의 생산 공정에서부터 데이터를 수집하여 클라우드에 저장하고, 여기에 저장된 제조 데이터를 활용하여 추후 AI 기반의 공급망 최적화 기술을 적용할 수 있는 시스템을 제안하였다. 기존 시스템의 경우는 대략 10종~20종 정도의 데이터 타입을 지원했다면, 제안 시스템은 100종 이상의 데이터 타입을 지원하도록 설계 및 개발된다. 또한 수집 주기의 경우는 매 초당 1~2회의 데이터를 수집할 수 있도록 지원하며, TB 단위의 데이터 수집이 가능하다. 따라서 본 시스템은 자동화된 데이터 수집 체계를 갖추고 있는 스마트 공장 외에 기존의 전통 제조 현장에도 적용할 수 있도록 고안하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안 배경 및 관련 기술
Ⅲ. 제안 시스템
Ⅳ. 적용 사례
Ⅴ. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-000031843