메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장지훈 (전북대학교 환경공학과) 양고수 (전북대학교 환경공학과) 옥용호 (전북대학교 환경공학과)
저널정보
한국냄새환경학회 실내환경 및 냄새 학회지 실내환경 및 냄새 학회지 제18권 제4호
발행연도
2019.1
수록면
299 - 310 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The emission of odor, characterized by the combustion conditions and biomass types resulting from the use of a biomass incinerator, was analyzed. The following biomass types were considered: bark, board waste, sawdust, wood flour, wood fiver, wastewater sludge, and timber wastewater. As a study method, the physico-chemical characteristics of each biomass type were analyzed to predict the potential substances that might be emited under incomplete combustion conditions. And, the emission components of odor emission by biomass were analyzed at the laboratory level using a combustion device. In addition, the characteristics of the contaminant (odor) emission per mixture ratio of biomass were analyzed in a stoker incinerator that is in operation in an actual establishment at a scale of 300 ton/day. In the biomass emission experiment using the combustion device at the laboratory level, the major substances such as Acetic acid, Styrene, Toluene, Benzene, Dichloromethane, etc. were analyzed, and these components were determined to increase odor index. VOCs measurement in the outlet of the stoker incinerator indicated that Acetaldehyde, Ethanol, Acetonitrile, Ethyl acetate, Toluene, etc. were detected as the major substances. These were similar to the emission substances presented by the experiment that had investigated emissions by biomass type. A study on the Effect of Operational Conditions in biomass stocker incinerator on the concentration of odorous materials emitted from stack showed a close relationship between the input by biomass type and urea, temperature in the incinerator, and the tendency to emit/produce odor.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0