메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
홍상모 (한양대학교 의과대학 내과학교실) Woong Hwan Choi (한양대학교)
저널정보
대한골다공증학회 Osteoporosis and Sarcopenia Osteoporosis and Sarcopenia Vol.2 No.2
발행연도
2016.1
수록면
103 - 109 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: We aimed to clarify the relationship between fat, muscle, and bone in elderly men and women. Methods: We analyzed 1373 men and 1803 women who were older than 65 years from the 2008e2010 Korea National Health and Nutritional Examination Surveys. Body composition and femur neck bone mineral density (BMD) were measured by dual-energy X-ray absorptiometry. Sarcopenia was defined as an appendicular skeletal muscle index (SMI) below one standard deviation (SD). Obesity was classified by fat mass index (FMI). Osteoporosis was defined as a BMD of 2.5 SD below that of femur neck BMD. Results: SMI and FMI were positively correlated with femur neck BMD. In multiple regression analysis, SMI (b ¼ 0.302 in men, b ¼ 0.154 in women; p < 0.001 each) and FMI (b ¼ 0.079 in men, b ¼ 0.179 in women; p ¼ 0.003 and p < 0.001 respectively) had a positive relationship with femur neck BMD. Men with sarcopenia were 3.89 times more likely to develop osteoporosis. Women with sarcopenia were 1.87 times more likely to develop osteoporosis. Sarcopenia was more clinically significant in the development of osteoporosis in men with a fat deficit and women with excess fat. Conclusions: Muscle mass and fat mass were identified as determinants of femur neck BMD in men and women. Among them, muscle mass of men and fat mass of women are the most important determinants of femur neck osteoporosis. © 2016 The Korean Society of Osteoporosis. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0