메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Panpan Dong (서울대학교) 한고은 (서울대학교) Muhammad Irfan Siddique (서울대학교) 권진경 (서울대학교) Meiai Zhao (Qingdao Agricultural University) Fu Wang (Qingdao Agricultural University) 강병철 (서울대학교)
저널정보
한국육종학회 Plant Breeding and Biotechnology Plant Breeding and Biotechnology Vol.4 No.1
발행연도
2016.1
수록면
79 - 86 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The viral disease induced by Tomato yellow leaf curl virus (TYLCV) reduces tomato (Solanum lycopersicum) yield significantly in tropical and subtropical regions. A number of loci, including Ty-1 to Ty-5, conferring resistance to TYLCV have been described and introgressed into modern tomato cultivars. The availability of molecular markers linked to these genes would expedite the introgression of TYLCV resistance into commercial cultivars. In the present study, we developed gene-based markers linked to the Ty-3 gene using a segregating population derived from a cross between the TYLCV-resistant line S. lycopersicum ‘A45’ and the susceptible line S. lycopersicum ‘A39’. Agrobacterium-mediated screening was used to test TYLCV resistance of plants in the segregating population, and the resistance was evaluated by a visual scoring method and polymerase chain reaction analysis. By comparing sequences of the Ty-3 genes of the resistant and susceptible lines, two high-resolution melting (HRM) markers (Ty3-HRM1 and Ty3-HRM2) and one sequence characterized amplified region (SCAR) marker (Ty3-SCAR1) were developed. The HRM markers were based on single nucleotide polymorphisms at the 13th exon and the 15th intron, whereas the SCAR marker was based on a 246-bp deletion in the 16th intron. These gene-based markers will be useful tools for marker-assisted selection in breeding programs to improve TYLCV resistance of tomato.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0