메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wangbao Zhou (Guangzhou University) Lizhong Jiang (Central South University) Zhi Huang (Central South University) Shujin Li (Wuhan University of Technology)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.20 No.5
발행연도
2016.1
수록면
1,023 - 1,042 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Based on Hamilton's principle, the flexural vibration differential equations and boundary conditions of the steel-concrete composite beam (SCCB) with comprehensive consideration of the influences of the shear deformation, interface slip and longitudinal inertia of motion were derived. The analytical natural frequencies of flexural vibration were compared with available results previously observed by the experiments, the results calculated by the FE model and the other similar beam theories available in the open literatures. The comparison results showed that, the calculation results of the analytical and Timoshenko models had a good agreement with the results of the experimental test and FE model. Finally, the influences of shear deformation and interface slip on the flexural natural frequencies of the SCCB were discussed. The shear deformation effect increases with the increase of the mode orders of flexural natural vibration, and the flexural natural frequencies of the higher mode orders ignoring the influence of shear deformations effect would be overestimated. The interface slip effect decrease with the increase of the mode orders of flexural natural vibration, and the influence of the interface slip effect on flexural natural frequencies of the low mode orders is significant. The influence of the degree of shear connection on shear deformation effect is insignificant, and the low order modes of flexural natural vibration are mainly composed of the rotational displacement of cross sections.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0