메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Songye Zhu (The Hong Kong Polytechnic University) Wenai Shen (Huazhong University of Science and Technology) Hong-Ping Zhu (Huazhong University of Science & Technology) You-Lin Xu (The Hong Kong Polytechnic University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.18 No.3
발행연도
2016.1
수록면
449 - 470 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

목차

등록된 정보가 없습니다.

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0