메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Varun Arvind (Icahn School of Medicine at Mount Sinai) Jun S. Kim (Icahn School of Medicine at Mount Sinai) Eric K. Oermann (Icahn School of Medicine at Mount Sinai) Deepak Kaji (Icahn School of Medicine at Mount Sinai) Samuel K. Cho (Department of Orthopaedic Surgery Icahn School of Medicine at Mount Sinai)
저널정보
대한척추신경외과학회 Neurospine 대한척추신경외과학회지 제15권 제4호
발행연도
2018.1
수록면
329 - 337 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: Machine learning algorithms excel at leveraging big data to identify complex patterns that can be used to aid in clinical decision-making. The objective of this study is to demonstrate the performance of machine learning models in predicting postoperative complications following anterior cervical discectomy and fusion (ACDF). Methods: Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), and random forest decision tree (RF) models were trained on a multicenter data set of patients undergoing ACDF to predict surgical complications based on readily available patient data. Following training, these models were compared to the predictive capability of American Society of Anesthesiologists (ASA) physical status classification. Results: A total of 20,879 patients were identified as having undergone ACDF. Following exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for testing data sets. ANN and LR consistently outperformed ASA physical status classification in predicting every complication (p<0.05). The ANN outperformed LR in predicting venous thromboembolism, wound complication, and mortality (p<0.05). The SVM and RF models were no better than random chance at predicting any of the postoperative complications (p<0.05). Conclusion: ANN and LR algorithms outperform ASA physical status classification for predicting individual postoperative complications. Additionally, neural networks have greater sensitivity than LR when predicting mortality and wound complications. With the growing size of medical data, the training of machine learning on these large datasets promises to improve risk prognostication, with the ability of continuously learning making them excellent tools in complex clinical scenarios.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0