메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lukumon Adeoti (University of Lagos) Oluwakemi Y. Adesanya (University of Lagos) Kayode F. Oyedele (University of Lagos) Itsemode P. Afinotan (Chevron Nigeria Limited) Ayo Adekanle (Chevron Nigeria Limited)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.22 No.1
발행연도
2018.1
수록면
155 - 169 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Seismic inversion has been widely practiced in the oil and gas industry because it generates broad bandwidth of impedance data which maximizes vertical resolution and minimizes tuning effects. The lack of accurate prediction of lithology and fluid content of subtle features identified in seismic data acquired over the Sandfish field, Niger Delta, Nigeria necessitated the use of seismic inversion. In this paper, simultaneous seismic inversion is adopted to integrate seismic and well data for quantitative interpretation and uncertainty assessment of the subsurface reservoirs in the Sandfish field. Three Sandfish (Sfn) wells with the required petrophysical logs, check-shot data, high quality 3D seismic data of five angle stacks (6–12°, 12–18°, 18–26°, 26–32°, and 32– 42°) were used for the analysis. A feasibility study including cross-plots of petrophysical and elastic properties from well data was first carried out to establish rock property relationships in the interval of interest. Biot-Gassmann fluid substitution analysis was also used to reveal sensitivity of rock properties to pore-fill type. Low frequency (0–2 Hz) models were generated from interpolation of highcut- filtered P-sonic, S-sonic, and density logs guided by interpreted seismic horizons. The low frequency models were used to broaden the spectrum to estimate elastic volumes. The five partial angle stacks were simultaneously inverted using Jason’s Rock-Trace® inversion software which iterated trial inversions until the model sufficiently matched the seismic data. The inverted P-impedance (ZP), Simpedance (ZS), and density (ρ) were used to derive Poisson’s ratio (σ), volume of sand (Vsand), lambda-rho (λρ), and mu-rho (μρ). The cross-plot of λρ with μρ from well data looks similar to that from inverted results. Sands and shales are discriminated on the basis of sands having low values of μρ. Hydrocarbon-bearing sands are differentiated from water-bearing sands and shales on the basis of having lowest values of λρ. The Biot-Gassmann fluid substitution analysis at reservoir N-01 reveals typical class III amplitude variation with angle (AVA) responses for low-impedance hydrocarbon sands. The lithology and fluid prediction maps extracted from Vsand and σ at the N-01 seismic horizon show variation in lithology and fluid types for the entire volume. The inversion products reveal heterogeneities in the reservoirs away from well control validated by a blind well test. Hence, the study shows that rock-property model from a simultaneous inversion is an effective predictive tool for lithology and fluid types which in turn can guide well placement and predict reservoir development in the field of study.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0