메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xiaowei Zuo (Northeastern University) Jianzheng Zhu (Northeastern University) Bailing An (Northeastern University) Ke Han (Florida State University) Rui Li (Northeastern University) Engang Wang (Northeastern University)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.23 No.5
발행연도
2017.1
수록면
974 - 983 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We investigated the effects of Fe content on microstructure and properties in as-cast and as-drawn Cu-(5.1-x)vol%Ag-x vol%Fe alloys. In microscale, increasing Fe content first refined and then coarsened Cu dendrites. Innanoscale, the size and length of Ag precipitates in Fe-doped alloys were smaller than the size and length of Ag precipitatesin Fe-free alloy, and the γ-Fe precipitates in Cu-2.9 vol%Ag-2.4 vol%Fe alloy were finer than the γ-Feprecipitates in Cu-5.1 vol%Fe alloy. The maximum hardness in as-cast Cu-Ag-Fe alloys was found in the Cu-2.9vol%Ag-2.4 vol%Fe alloy. With increasing drawing strain, both ultimate tensile strength and hardness of Cu-Ag-Fe composites were increased. Simulation data among the relative volume fractions of Fe, hardness and electricalconductivity showed that, as the relative value approached 40%, the Cu-Ag-Fe composite displayed greater hardnessthan other samples. As a small amount of Ag was replaced by Fe, the electrical conductivity decreased significantlywith a descending slope of approximately 3%IACS (International Annealed Copper Standard) per vol%Fe. As 47 vol%Ag was replaced by Fe, however, the electrical conductivity decreased by 51% and remainedalmost invariable with further increasing Fe content. After annealing at 450 °C for 4 h, the electrical conductivityof the Cu-2.9 vol%Ag-2.4 vol%Fe composite was elevated up to 68.3%IACS from 38.5%IACS.

목차

등록된 정보가 없습니다.

참고문헌 (77)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0