메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임현재 (Department of Family Medicine Gangnam Severance Hospital Yonsei University College of Medicine) 서민석 (연세대 강남세브란스병원) 이혜리 (Department of Family Medicine Gangnam Severance Hospital Yonsei University College of Medicine) 심재용 (연세대학교) 강희택 (연세의대 가정의학과) 이용제 (연세대학교)
저널정보
대한비만학회 Journal of Obesity & Metabolic Syndrome Journal of Obesity & Metabolic Syndrome Vol.25 No.1
발행연도
2016.1
수록면
19 - 23 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: It has not been determined which obesity index might be most appropriate to predict nonalcoholic fatty liver disease in Asian populations. This study aimed to evaluate the usefulness of the waist-to-height ratio in assessing patients with nonalcoholic fatty liver disease and to identify the optimal cut-off values useful for predicting nonalcoholic fatty liver disease. Methods: Receiver operating characteristic curve analyses were conducted in order to assess the accuracy of the waist circumference, body mass index, and waist-to-height ratio for detecting nonalcoholic fatty liver disease among 616 women aged 20 years or older. To evaluate the optimal value of anthropometric indices, the Youden J-index (sensitivity+specificity-1) was used. Results: The area under the ROC curve of waist-to-height ratio was highest among anthropometric obesity indices as follows: 0.776 (0.731-0.822) for waist circumference, 0.775 (0.728-0.822) for body mass index, and 0.792 (0.748-0.836) for waist-to-height ratio, respectively. Using a waist-to-height ration cut-off value of 0.49, the sensitivity and specificity for detecting nonalcoholic fatty liver disease were 72.3 % and 74.7%, respectively. Conclusion: These results demonstrated that the waist-to-height ratio may be a better obesity index for identifying individuals at risk for nonalcoholic fatty liver disease in Korean women.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0