메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박순욱 (Soongsil University) 전혜윤 (Soongsil University) 김윤수 (Soongsil University) 이수원 (Soongsil University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제12호(통권 제213호)
발행연도
2021.12
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
재난문자는 재난 발생 시 국가에서 해당 지역에 있는 시민들에게 보내는 문자 메시지다. 재난문자의 발송 건수는 점점 증가하여, 불필요한 재난문자가 많이 수신됨에 따라 재난문자를 차단하는 사람들이 증가하고 있다. 이와 같은 문제를 해결하기 위하여, 본 연구에서는 재난문자를 재난 유형별로 자동으로 분류하고 수신자에 따라 필요한 재난의 재난문자만 수신하게 하는 딥러닝 모델을 제안한다. 제안 모델은 재난문자를 KoBERT를 통해 임베딩하고, LSTM을 통해 재난 유형별로 분류한다. [명사], [명사 + 형용사 + 동사], [모든 품사]의 3가지 품사 조합과 제안 모델, 키워드 분류, Word2Vec + 1D-CNN 및 KoBERT + FFNN의 4종류 분류 모델을 활용하여 재난문자를 분류한 결과, 제안 모델이 0.988954의 정확도로 가장 높은 성능을 달성하였다.

목차

[Abstract]
[요약]
I. Introduction
II. Related Research
III. The Proposed Model
IV. Experiment and Results
V. Conclusions
REFERENCES

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0