메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박찬 (Hoseo University,) 김형주 (Hoseo University) 문남미 (Hoseo University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제12호(통권 제213호)
발행연도
2021.12
수록면
77 - 84 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 영상 데이터, 비콘 데이터의 결합을 통해 집단시설에서 출입이 허용된 승인자와 비승인자를 구분하는 시스템을 제안한다. IP 카메라를 통해 수집된 영상 데이터는 YOLOv4를 사용하여 사람 객체를 추출하고, 애플리케이션을 통해 비콘의 신호 데이터(UUID, RSSI)를 수집하여 핑거프린팅 기반의 라디오 맵을 구성한다. 비콘은 신호의 불안전성을 보완해 위치 파악의 정확도를 향상하기 위하여 CNN-LSTM 기반의 학습을 진행한 후 사용자 위치 데이터를 추출한다. 이후 도출된 위치 데이터와 사람 객체가 추출된 영상 데이터를 매핑해 실시간으로 비승인자를 추적한다. 본 논문의 결과로 93.47%의 정확도를 보였으며, 향후 코로나19로 사용이 증가한 QR코드 등의 출입 인증 절차와 융합해 인증 절차를 거치지 않은 사람을 추적하는 확장성까지 기대할 수 있다.

목차

[Abstract]
[요약]
I. Introduction
II. Related works
III. Unauthorized person tracking system
IV. Experiment
V. Conclusions
REFERENCES

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0