메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유현정 (한국생산기술연구원) 김철희 (한국생산기술연구원)
저널정보
대한용접·접합학회 대한용접·접합학회지 大韓熔接·接合學會誌 第39卷 第6號
발행연도
2021.12
수록면
658 - 665 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The welding process parameters of resistance spot welding are determined by quality indicators, such as nugget diameter, and tensile shear test behavior, such as failure load and location. In this study, deep-learning models were investigated to predict the quality indicators from base materials and process parameter information. For each model, hyperparameters, such as the number of hidden layers, number of nodes in the hidden layer, learning rate of the optimizer, and number of epochs, were optimized based on the model performance. The regression models for nugget diameter and failure load showed coefficients of determination of 0.90 and 0.95, respectively. Two models were developed to classify failure location: a 1-step model that estimates the failure location from the base material information and process parameters, and a 2-step model that estimates the failure location from the base material information and the nugget diameter as predicted by the developed regression model. The classification models for failure location showed similar accuracies of approximately 90%.

목차

Abstract
1. 서론
2. 데이터 수집 및 모델링 방법
3. 결과 및 토론
4. 결론
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-581-000061192