메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
La Gubu (Gadjah Mada University) Dedi Rosadi (Gadja Mada University) Abdurakhman (Gadja Mada University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.4
발행연도
2021.12
수록면
782 - 794 (13page)
DOI
10.7232/iems.2021.20.4.782

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we consider the data preprocessing using trimmed k-means clustering for robust mean-variance portfolio selection. The proposed method trims the outliers in the data preprocessing stage. The optimum portfolio is formed by selecting the stock representation for each cluster using the Sharpe ratio. The optimum portfolio formation is accomplished by robust fast minimum covariance determinant (FMCD) and robust S mean-variance (MV) portfolio model. In the empirical experiment, we use fundamental trading data for the year 2017 (to form the clusters) and daily closing price data of LQ45 index stocks from August 2017 to July 2018 taken from the Indonesian Stock Exchange to form the optimum portfolio. As benchmark for portfolio performance formed in this study, we use the performance of the Indonesia Composite Index (ICI). The results reveal that the proposed method can reliably obtain the optimum portfolio and solve the outliers problem. Moreover, the comparison stage shows that the combination of trimmed k-means clustering and robust portfolio model is better in forming the optimum portfolio than the combination of k-means clustering and robust MV portfolio model. Finally, we also find that the combination of trimmed k-means clustering (with α=10%) and robust FMCD MV portfolio model outperforms portfolios produced by other methods.

목차

ABSTRACT
1. INTRODUCTION
2. MATERIAL AND METHOD
3. EMPIRICAL STUDY
4. DISCUSSION
5. CONCLUSIONS AND FUTURE RESEARCH
REFERENCES

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-000124377