메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이재빈 (에스티에스 엔지니어링) 황원식 (에스티에스 엔지니어링) 하승우 (KLES) 박성주 (동명대학교)
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2021년 학술대회
발행연도
2021.11
수록면
640 - 640 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We present a technique for monitoring the stress of high-temperature power plant piping using machine learning. The stress is calculated through the advanced numerical analysis technique using the previously suggested displacement and rotation information of the pipe in operation, and the calculated displacement-stress data is machine-learned on the sample data. The stress of pipe in power plant can be predicted quickly by using the machine learning module presented in this paper ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0