메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창희 (Seoul National University of Science and Technology) 윤예린 (Seoul National University of Science and Technology) 배세정 (Seoul National University of Science and Technology) 어양담 (Konkuk University) 김창재 (Myongji University) 신상호 (Ministry of Land, Infrastructure and Transport) 박소영 (Ministry of Land, Infrastructure and Transport) 한유경 (Seoul National University of Science and Technology)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제39권 제6호
발행연도
2021.12
수록면
437 - 456 (20page)

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
우리나라 원격탐사 분야에서는 2017년을 기점으로 딥러닝의 뛰어난 성능을 바탕으로 연구 성과를 나타내기 시작하여, 현재는 영상 전처리부터 활용까지 원격탐사의 거의 모든 분야에서 딥러닝을 적용하는 연구가 수행되고 있다. 원격탐사 분야에 적용된 딥러닝의 연구 동향 분석을 수행하기 위해, 2021년 10월까지 출판된 원격탐사 분야에 딥러닝이 적용된 국내 논문들을 수집하였다. 수집된 60여 편의 논문들을 바탕으로 딥러닝 네트워크 목적, 원격탐사 활용 분야, 원격탐사 영상 취득 탑재체별로 나누어 연구 동향 분석을 수행하였다. 또한, 논문에서 훈련자료 구축에 효과적으로 이용되었던 오픈소스데이터들을 정리하였다. 본 논문을 통해 현시점에서 딥러닝이 원격탐사 분야에 자리잡기 위해 해결해야 할 문제점들을 제시하면서, 향후 연구자들의 원격탐사 분야에 딥러닝 기술을 접목하기 위한 연구 방향을 설정하는 데 도움을 제공하고자 한다.

목차

Abstract
초록
1. 서론
2. 국내 원격탐사 분야 딥러닝 기술 적용사례 조사
3. 딥러닝 네트워크 목적에 따른 원격탐사 연구 동향 분석
4. 원격탐사 활용 분야에 따른 딥러닝 연구 동향 분석
5. 원격탐사 영상 취득 탑재체별 딥러닝 연구 동향 분석
6. 딥러닝 훈련을 위한 오픈소스 데이터
7. 요약 및 결론
References

참고문헌 (89)

참고문헌 신청
Baek, C.S., and Yom, J.H. (2019), Spatiotemporal resolution enhancement of PM10 concentration data using satellite image and sensor data in deep learning, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 37, No. 6, pp. 517-523. (in Korean with English abstract) google schola Bak, S.H., Kim, N.K., Jeong, M.J., Hwang, D.H., Unuzaya Enkhjargal, Kim, B.R., Park, M.S., Yoon, H.J., and Seo, W.C. (2020), Study on detection technique for coastal debris by using unmanned aerial vehicle remote sensing and object detection algorithm based on deep learning, Journal of the Korea Institute of Electronic Communication Science, Vol. 15, no. 6, pp. 1209-1216. (in Korean with English abstract) google schola Cha, S.G., Jo, H.W., Lim, C.H., Song, C.H., Lee, S.G., Kim, J.W., Park, C.Y., Jeon, S.W., and Lee, W.K. (2020), Estimating the stand level vegetation structure map using drone optical imageries and LiDAR data based on an Artificial Neural Networks (ANNs), Korean Journal of Remote Sensing, Vol. 36, No. 5-1, pp. 653-666. (in Korean with English abstract) google schola Cho, E.J., and Lee, D.C. (2020), Building detection by convolutional neural network with infrared image, LiDAR data and characteristic information fusion, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 38, No. 6, pp. 635-644. (in Korean with English abstract) google schola Choi, H.S., Seo, D.C., and Choi, J.W. (2020), A pansharpening algorithm of KOMPSAT-3A satellite imagery by using dilated residual convolutional neural network, Korean Journal of Remote Sensing, Vol. 36, No. 5-2, pp.961-973. (in Korean with English abstract) google schola

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0