메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Bingze Xia (Concordia University) Iraj Mantegh (National Research Council of Canada) Wenfang Xie (Concordia University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
275 - 282 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Applications of Unmanned Aircraft Systems (UAS) are growing fast in many areas, including Advanced Air Mobility (AAM) which requires the safe integration of aerial vehicles in an airspace that is shared by many other operators. Autonomous or automated UAS will have to a large extent rely on onboard or ground-based guidance and navigation, with no or minimum operator intervention, to perform their operations. Using GPS/GNSS data is a common way of navigation for existing UAS. Safe autonomous UAS operations require the capability for safe landing in case of abnormal situations, such as loss of GPS signal or weather effects. In this paper, a new automatic safe-landing method is proposed that can perform in GPS-denied or degraded environments. A multi-layer method is designed that applies the vehicle’s Inertial Navigation System to navigate to a safe landing zone, and then with an Artificial Intelligence-based approach utilizes optical search and object detection to locate the landing area for landing. A 3D depth camera and fully convolutional neural network method are used to recognize the landing features and obstacles, integrated with Markov Decision Process to guide the aircraft safely without collisions towards the landing zone. A series of simulations are presented to test and validate the proposed system.

목차

Abstract
1. INTRODUCTION
2. PROBLEM STATEMENT
3. METHODOLOGY
4. SIMULATION RESULTS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0