메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shunsuke Moritsuka (Kyushu Institute of Technology) Tohru Kamiya (Kyushu Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
2,047 - 2,050 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Magnetic Particle Testing (MPT) is a method for determining the presence or absence of a defect by magnetizing the object to be inspected and sprinkling magnetic powder, which is absorbed by the defective part such as a crack and appears as a magnetic powder pattern, which is then evaluated by a specialist. By using the MTP, inspection can be performed without breaking the object to be inspected. However, there are some problems such as the possibility of overlooking defects. In this paper, to solve the problems we develop a classification method of defect images by deep learning for the automation of MPT. The proposed method is based on the structure of U-Net, which has excellent segmentation capability in image processing, and performs segmentation using an improved model that adds convolutional layers to U-Net. Then, an algorithm that combines the result with the last part of the encoder of U-Net is used to discriminate the presence or absence of defects. Using this method, defects were classified from the images obtained during MPT. The results showed that Accuracy of 85.8%, TPR of 65.2%, and FPR of 13.8%.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. EXPERIMENT
4. DISCUSSION AND CONCLUSION
REFARENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0