메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤광한 박종석 (고려대학교) 김상호 (고려대학교)
저널정보
한국사회체육학회 한국사회체육학회지 한국사회체육학회지 제87호
발행연도
2022.1
수록면
313 - 328 (16page)
DOI
10.51979/KSSLS.2022.01.87.313

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: The purpose of this study is to assess the influence of the amount of walking exercise on metabolic syndrome and metabolism-related factors for the elderly with sedentary life using KNHNES data.
Method: The data were obtained from the KNHNES Ⅶ conducted in 2016~2108. The subjects, a total of 4,288 elderly aged 65 years and older, were classified into two groups based on habitual sedentary life time and three groups based on total walking exercise amount. The dta processor for this study was used as a percentage and standard error (SE) or mean (M) of all measured values, used chi-square test, generalized linear model, and logistic regression analysis.
Results: The results of this study are as follows. 1) The body mass index and waist circumference of the sedentary life group were significantly higher than those of tehnormal group (p<.001). 2) The prevalence of metabolic syndrome was significantly higher in the sedentary lief group than in the normal group (p<.001). 3) The difference of metabolism-related factors between the walking exercise amount groups in sedentary life was significantly higher in height, weight, total calorie intake (p<.001), and HDL-C (p<.01). 4) The prevalence of metabolic syndrome in the walking exercise groups was significant (p<.05).
Conclusion: In summary, the findings in this study confirm that people with a sedentary life are more likely to have metabolic syndrome. The amount of high-intensity walking exercise and the amount of moderate-intensity walking exercise in a sedentary life can prevent metabolic syndrome.

목차

Ⅰ. 서론
Ⅱ. 연구방법
Ⅲ. 결과
Ⅳ. 논의
Ⅴ. 결론 및 제언
참고문헌
ABSTRACT

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-692-000203941