메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Dong-Eon Yoon (Tongmyong University) Hyo-Sang Lee (Tongmyong University) Jun-Hyoung Kim (Tongmyong University) Am-Suk Oh (Tongmyong University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2022 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.13 No.1
발행연도
2022.1
수록면
181 - 184 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Public services managed by the state vary by age, income quintile, and occupation. There are various platforms that notify these public service resources, but detailed conditions such as the number of household members do not meet, so they often do not receive support. Therefore, it is necessary to provide accurate information corresponding to the support target by analyzing and visualizing public service data. To this end, the process of preprocessing data is important, and it is performed through data cleansing and analysis variables. In this paper, we study techniques for correct cleansing of public service data based on the R language useful for data analysis. The frequency and percentage between categorical data are calculated and the association between variables is visualized as bar graphs. Users will be able to more intuitively and easily understand the types of public services through the analyzed results.

목차

Abstract
I. INTRODUCTION
II. SYSTEM MODEL AND METHODS
III. RESULTS
IV. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0