메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Suwhan Baek (Kwangwoon University) Jeawoo Baek (Kwangwoon University) Hyunsoo Yu (Kwangwoon University) Chungseop Lee (Kwangwoon University) Cheolsoo Park (Kwangwoon University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.11 No.1
발행연도
2022.2
수록면
8 - 13 (6page)
DOI
10.5573/IEIESPC.2021.11.1.8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The evaluation of sleep stages is the most crucial part in diagnosing and treating patients with sleeping disorders. However, in most healthcare environments, doctors evaluate sleep stages manually by using patients’ polysomnography (PSG) data, which leads to high economic and time costs. PSG data are extremely complicated due to the amount of data and its recording process. In this study, instead of using PSG data single-channel EEG data are used to create an automated model for evaluating the five stages of sleep. The proposed model is an explainable artificial intelligence model for applications in a real-world medical environment. For this purpose, single-channel EEG data are decomposed into each signal component by band-pass filters. For post-hoc analysis, the learning rate for each key component in determining the sleep stages was estimated using the attention mechanism. A cross-evaluation was conducted on data from 80 subjects. The result was an averaged F1-score of 72.66 (±22.24) and an explainable model where EEG components were more effective in estimating each sleep stage.

목차

Abstract
1. Introduction
2. Methodology
3. Results
4. Discussion
5. Conclusion
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0